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A general partial summation method for including arbitrary classes of  
diagrams to all orders in the coupled cluster based size consistent energy 
functional for closed shell states is developed. Since the various reduced 
density matrices which appear  in the energy functional are essentially the 
t ime-independent analogue s of the corresponding many body Green functions, 
it is possible to derive Dyson-like equations for these quantities. By expanding 
the associated "proper"  self energy parts in terms of the T-amplitudes, one 
can carry out partial summations in the reduced density matrices and thus in 
energy. At a higher level, higher order terms in a "proper"  self energy can 
also be generated by renormalizing the internal propagators in it, and consider- 
ing only the "irreducible" self-energy terms. 
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1. Introduction 

Our understanding of the role of  electron correlation in many-electron systems 
has evolved in rapid strides over the past two decades. As a consequence, the 
importance of  treating electron correlation in a compact  and tractable manner  
is now increasingly being felt. One has now come to believe that a cluster 
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expansion representation of a many-electron wave-function possesses the poten- 
tiality of describing electron correlation in a manner superior to what is achieved 
in a linear variation method as in a CI or a simple, order by order, perturbation 
theory. 

The Ursell-Meyer exponential cluster expansion ansatz for a closed-shell many- 
fermion ground state was first used in nuclear physics by Coester and Kummel 
[1], and it was later successfully transcribed to atomic and molecular physics by 
Ci~ek and Paldus [2] and others [3]. The importance of such an exponential 
ansatz was also noted by Primas [4] who emphasized the usefulness of this ansatz 
to guarantee the size-consistency of the extensive properties like energy. This 
aspect has received its due importance in recent years [5, 6]. Since this initiation, 
the coupled cluster method has been extensively utilized for treating ground 
state electron correlation energy and describing the geometries of potential 
surfaces [5-7]. 

In the closed-shell coupled cluster development, the ground state wave-function 
�9 g, is written as a cluster expansion around the Hartree-Fock (H-F) reference 
function as 

I~g,) = exp (T)lqbuF). (1) 

It has been noted by several authors [1-3, 6-8] that the desired property of 
preserving size-consistency of energy stems essentially from the non-variational 
formulation of the theory: the energy is calculated from an expression 

Eg, = (d~nFleX p (-- T)H exp (T)I~HF) (2) 

which generally differs from the ground state expectation value formula 

Egr - (~grl Hla'XJ'g, -) = (dPHFI exp ( T+)H exp ( T)IdPHF ) (3) 
(~grl*g,) (qbHV I exp (T +) exp (T)I~HF) 

unless the exact ground state is used for calculating Eg, Eq. (2) involves an 
operator 171=exp(-T)Hexp(T) which contains connected terms only, as 
guaranteed by the Hausdorff formula involving multicommutator expansion of 
H. This property is retained even if the series is truncated. In contrast, Eq. (3) 
involves a ratio of numerator and denominator, none of which is connected in 
general, and hence the size-consistency cannot be maintained in a truncated 
expansion. In special cases of the choice of the exponential cluster operator, the 
definitions Eqs. (2) and (3) agree, as for example when a unitary cluster operator 
of an exponential form is chosen, much in the same spirit as the Van Vleck-Kemble 
transformation [9]. Thus, for example, Kutzelnigg [8] has advocated the use of 
the following unitary operator Wu: 

W, = exp (o-) (4) 

with 

~r = T -  T + (5) 
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where T involves hole-particle excitations only. As or+= --or, the formulae Eqs. 
(2) and (3) agree, the denominator in Eq. (3) becomes unity and the numerator 
coincides with the expression of Eq. (2). A less trivial case of a size-consistent 
energy functional using the original nonunitary cluster ansatz exp (T) was recently 
studied by us for closed-shell systems [10] where the numerator in Eq. (3) was 
shown to factorize into a connected series involving connected operators with T, 
T § and H contracted together and the denominator itself. With the cancellation 
of the denominator, the resulting expression becomes size-consistent, and this 
property is retained even in a truncated expression 

Egr = (qbHFI exp (T+)H exp (T)IqbHF) . . . .  �9 (6) 

The cluster amplitudes are then determined by invoking a Euler-type variational 
principle for Eg, and solving the resultant Euler equations. The unitary and the 
nonunitary approaches to variational theories of electron correlations have also 
been generalized recently to encompass open-shell states [11, 12]. 

For practical applications, the connected infinite series in Eq. (6) involving the 
cluster amplitudes of T has to be truncated to a finite power. The strict upper 
bound property of Egr is thereby lost. The variational principle for solving the 
cluster amplitudes is then more akin in spirit to the "Varied Portion Approach" 
(VPA) of  Sinano~lu [13] than a Rayleigh-Ritz variational principle. The loss of 
the upper bound property as a result of truncation in cluster expansion in nuclear 
matter calculations is known as the "Emery Difficulty" [14]. However, if the 
dominant terms in the expansion in Eq. (6) are retained, this difficulty will not 
be severe, as has been demonstrated by us in model calculations [10]. Nevertheless 
one feels that one ought to have a general method of summing up at least the 
physically important terms to infinite order. This will improve the results and the 
loss of upper bound property will also be annulled, making the results approach 
the corresponding variational bound. 

With this motivation in mind, we would like to investigate in this paper a method 
which has the potentiality of summing up general classes of terms involving T + /T  
amplitudes to all orders. The basic idea behind our approach can be succinctly 
summarized as follows. The energy series in Eq. (6) can always be written as 

Eg r - - - -  EHF'4- Tr fp c + Tr vp c (7) 

where f and v stand for the matrices of the H - F  operator and the two-body 
interaction in the H - F  orbital basis, and pC and pC are the correlation corrections 
to the one- and two-electron reduced density matrices respectively, pC and pc  
are both infinite series in T / T  § cluster amplitudes, so that what we are after is 
to find out a general scheme of summing the infinite series for pC and pC in the 
cluster amplitudes. This will be achieved by a procedure conceptually analogous 
to the propagator renormalization method [15] of Green function t h e o r y - a s  
applied to the many body perturbation theory for the ground state [16, 17]. That 
such a procedure will be useful is not entirely unanticipated, because the reduced 
density matrices are nothing but the time-independent analogues of the 
appropriate Green functions. 
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Once we identify certain basic terms as dominant in Egr, their repeated appear- 
ances in the energy series are taken care of to all orders by solving certain implicit 
equations having renormalized Dyson equation-like structure. Just as in the case 
of propagator renormalization, the methodology and the practical manipulations 
in this procedure are best described in terms of Green function terminology, 
using a diagrammatic language, which we shall introduce in Sect. 2. In Sect. 3 
we shall make certain pertinent observations regarding important terms in the 
ground state correlation problems and include the relevant discussions. In Sect. 
4 we shall introduce the concept of irreducible self-energy insertions to compactify 
the development. In Sect. 5 we summarize the main features of our theory. 

2. Use of  modified propagators in a variational coupled cluster method 

In what follows, we shall describe the development of our method in terms of 
the concrete approximations pertinent to the closed shell situation. Generalization 
of our method to incorporate the terms left out of our consideration is fairly 
straightforward. 

Following Ci~ek and others [2, 3], we only retain the two-body cluster operator 
T2 in T, corresponding to the retention of pair and higher order pair interactions. 
Collecting all the T+/T amplitudes in rows/columns t+/t, the infinite series in 
Eq. (6) may be written as [10] 

E g  r -- EHF + ~ [t+~) t+| " �9 �9 m terms A m ' n t |  t |  " " " II terms] (8) 
m , n  

m + n =  1,oo 

where Am'" is the matrix of coefficients associated with m-th and n-th total power 
of T + and T amplitudes respectively. Am'" involves matrix-elements o f f  and v. 
Comparing Eq. (8) with Eq. (7), we observe that for the f-containing terms of 
A "~", the series in t + and t constitute pC and, similarly, the v containing terms, 
the t+/t series constitute pC. Diagrammatically, Eq. (7) (or the whole series,'Eq. 
(8)) may be represented as shown in Fig. 1. The hatched portion of each diagram 
represents the part of pC or pC, as the case may be, and the vertices with a circle 
with two or four lines represent the f or v matrix-element. As concrete examples, 
the lowest order terms for each of the shapes of pC and pc are shown in Fig. 2 
with T = T2 approximation. The vertices with filled circles and squares stand for 

EUhcl  
Fig. 1. Diagrammatic representation of Eq. (7). The hatched portion of each diagram represents the 
concerned reduced density matrices pC and pC. Open circles represent the Hamiltonian 
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Fig. 2. Diagrammatic  representation of some typical terms in p c (a) and pC (b-d) in the pair (T  = T2) 
approximation.  Note that  the (pp, ph) matrix elements of  pC (c) are identically zero in this approxima- 
tion. Filled squares and circles represent T § and T vertices respectively 

the T and T + amplitudes respectively. The higher order terms contributing the 
various shapes of pC and pC are obtained by dissecting one or more lines of the 
lowest order diagram for each shape and attaching an appropriate composite 
skeleton having as many open lines obtained from T+/T contractions. As an 
example, consider a higher order term contributing to the pC diagram, Fig. 2a. 
In Fig. 3a we have traced its genesis from Eq. (7) and have shown that by suitably 

Fig. 3. Higher order terms of pC and pC can be generated by skeletal insertions on the lines of  basic 
diagrams of  lower order. The generation of  such a fourth order term of  pC is depicted in (a). Various 
possible orderings of  T and T § vertices will sum up to cancel the weight factor of  such terms. This 
is illustrated in (b) 
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juggling the components  of  the energy diagram, we can make it look like an 
insertion on a single line to the lowest order diagram of pC. The portion inserted 
is shown inside a box. Clearly, a repeated insertion of the skeleton of the box 
onto a single line is going to generate an infinite series. It is easy to show, that 
for n such insertions on a line, there are n !2 ways of keeping the inserted T §  
vertices with respect to each other in various ways. The weight of  any insertion 
for a particular term is 1/n !2, each 1/n! coming from the exponential on either 
side of  H in Eq. (6). These diagrams are all topologically equivalent, so that j t  
suffices to stretch all the diagrams to make them look like successive insertions 
and consider only one of them and multiply by a factor n !2 to take care of all 
of  them. The overall contribution of n insertions on a line is thus effectively only 
one insertion without additional weights. This aspect is illustrated diagrammati- 
cally in Fig. 3b for n = 2. Thus, if we look upon the successive insertions of  the 
skeleton of the box of Fig. 3a as a kind of  propagator  modification of  a particular 
internal line of  the lowest order diagram Fig. 2a, then we may include the effect 
of  the successive insertions by redefining the value of  the contraction correspond- 
ing to a single internal line through evaluating a series of  the form 

~ . , . = ~ , o , + z  0 o o o 0 _ 
l d l i j X j k l d l k i " ~  E " ' "  ( 9 )  ld l ij X j  k ld l kl X lm l" l m i' -I- 

j k  j k lm  

where v~iv is the modified value of the contraction and v~ etc. are unmodified 
values of  the contraction, x o- etc. the contributions from a single insertion. Clearly, 
using time independent  Wick's theorem, we have 

vow = (sign)8~ (10) 

where sign = ~: 1 for particles/holes. For all the choice of  orbital labels, we have 
the matrix equation 

0 0 0 0 0 0 
151 ~--- 151 .q_ I ) I X V l  ..~ V I X V l X g t  1 .~_ . . . .  / ,0 + vOxvl. (11) 

Equation (11) is an implicit equation in Vl, and is strongly reminiscent of the 
Dyson equation of Green function theory [15, 18]. I f  we depict the single line 

o by thin lines, then all the single insertions contractions v~ by heavy lines and Vl 
of  Fig. 2a will be automatically accounted for if we replace the thin lines by 
heavy lines. This is illustrated in Fig. 4a. The corresponding single line modifica- 
tions on Figs. 2b, d, etc. will likewise sum similar single line insertions to all 
orders. Modification of 2a will improve pC, those of  2b and 2d will improve p2 c. 
As an example of  pC modification, the type of terms generated by single line 
modification Fig. 2b are shown in Fig. 4b. 

Before proceeding further it seems appropriate  here to introduce the terminology 
used extensively in the Green function literature to classify the various diagrams - 
both the lowest order terms and the ones with insertions. The insertions we 
introduce will be called self energy insertions from now on. I f  they are one-body 
operators, we call such insertions one body self energy. We shall call an n-body 
self energy insertion a proper  n-body self energy if the insertion cannot be 
disconnected by cutting just n internal lines. Thus, the insertion in the box of 
Fig. 3a is a proper  self-energy, while all those in the multiple insertions (as for 
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Fig. 4. (a) Terms in the energy series summed by renormalizing the internal contractions (v 1). Heavy 
and light lines represent renormalized and bare contractions respectively. Filled squares and circles 
represent T + and T vertices respectively and Hamiltonian is represented by open circle. (b) Terms 
summed up by renormalizing v 2 in the energy series. Diagrammatic  notation is as before 

example in Figs. 3b) are not. Calling contributions of all the proper self-energies 
as Yl, the exact single particle contraction v~ x may be written as 

e X  0 ~ 0 " ~  e x  
v l  = v l - ~  v l z q v l  �9 (12) 

Some examples of higher order El diagrams are shown in Fig. 5. The paper  self 
energy of Fig. 2a is the lowest order term of El. 

We are now in a position to concretely describe the procedure we are going to 
advocate for incorporating classes of  diagrams to all orders, once the important 
classes are identified. We first look for the lowest order diagram, insertions onto 

a b c 

Fig. 5. Some higher order terms of the proper self energy part .'21. The parts enclosed in the box are 
skeletal insertions onto a basic skeleton and can be generated by renormalizing v I and v z within E 1 
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the external lines of which will generate the terms deemed as important. We then 
classify the insertions as various n-body self energy insertions and pick out from 
them only the proper n-body self-energy skeletons. If  we agree to keep up to 
m-body self energy terms then calling the collection of all the m-body self energy 
skeletons as l~m, the modifications of a bunch of  m-internal line contractions 
may be written as 

ex 0 - -  0 ~ ex 
V m : V m ' l - l Y r a , ~ m V  m (13) 

where v ~ is an appropriate product of functions of the lower rank Vk'S defined 
recursively: 

v ~ -- vl |  (14a) 

V3 0 ~--- lY 1 (~)V l (~)lY 1 "}- llY 1 (~) IDO~2IY2 (14b) 

and so on. Clearly v~ x satisfies an implicit equation analogous to Bethe-Salpeter 
equation of  Green function theory [18]. 

We illustrate this procedure by taking m = 2. We first identify the one body proper 
self energies contributing to s and evaluate v~ x from Eq. (12). Next we identify 
the proper two-body self energy insertions and call them ~2. The modification 
of a bunch of  two internal lines may then be evaluated by solving Eq. (13) for 
m = 2. The procedure becomes clear from the Fig. 6. Some illustrative diagrams 
of  Ii~2 are shown in Fig. 7. 

- r  - -  § 

(2 

§ 

@ § �9 .... 

�9 

b 

= �9 - < > - Q  

§ ~ § . . . . .  

C 

Fig. 6. (a) Diagrammatic representation of Eq. (13). Heavy and light lines represent the renormalized 
and bare Vl lines. (b) Since renormalized v1 is used to define p0 it consists of the infinite series shown 
here. (c) The full series for v2 
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a b c 

Fig. 7. D i a g r a m m a t i c  r ep resen ta t ion  of  some of  the low order  te rms  in X2. D i a g r a m m a t i c  no ta t ion  is 

as before  

3. The one- and two-body ~ insertions for the closed shell problem 

As a concrete application of the procedure described above, we now enumerate 
certain representative and important diagrams of Eq. (6) yielding Egr, and demon- 
strate by working out the appropriate equations how the scheme should be carried 
out in practice. 

We consider first the one-body insertions, and assume that only the lowest order 
term in ~1, viz that of Fig. 2a is the important one. In that case Eq. (12) with ~j 
approximated as ~ corresponding to Fig. 2a will yield an approximate el. 
Evaluating the value of the insertion using standard diagram rules, we find using 
Eq. (12) 

0 ~ -1 
L'L~t3 =[Vl- -~1]~  (15a) 

0 ~ -1 
Vipq = D'l  - ~ 1]pq ( 15 b) 

for hole labels ~ , /3 , . . .  and particle labels p, q, etc. Vo is defined in Eq. (10). ~t3 
and l~pq are given by 

~,~ =�88 Y~ {pqlt[yfl}~{pq]tlya},~(2o'+ 1) (16a) 
o'p q"/ 

-1 Z {qrltly6}~{prlt[y6}~(2c~+ 1) (16b) 

where {ab[tlcd}~ etc. are reduced Hugenholtz matrix elements [10], as used in 
our earlier work, following earlier works of Mukherjee et al. [19]. Calculation of 
the vl matrix thus involves inversion of the matrix [ v ~  -l. 

We consider the two-body insertion next. Let us again assume that only the lowest 
order basic skeleton as shown in Fig. 7a is the important one. There are in all 
hole-hole, particle-particle and hole-particle insertions corresponding to various 
ways of placing the arrows on the skeleton of Fig. 7a. The Bethe-Salpeter 
equation (13) takes the form 

o 
u2 =[v2-2~2] -~ (17) 

The relevant matrix-elements are given by 

0 
v2,~t3.~ = Ul~v " ulna, (18a) 
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0 
l l2pq ,  rs = l J l p  r �9 l } l q s ,  

0 
1J2pc~,ql3 ~ -  l " l p q  " P l a f l ,  

P q  

~2pq  . . . . .  ~- E {Pql tl al3}.{rs[ tl a/3 },., 

1/2 
~2p,~,e,,~,-- Y, {prltlYfl}~i{qrltlYa}~j cri 

qv" 1/2 o-io" i 

Here o-i 1/2 1/2 is a 9 - j  symbol. 

1/2 % 1 /2J  

1/2 tr l 
1/2 1/2 (2o-~+ 

crj 1 /2J  

(18b) 

(18c) 

(19a) 

(19b) 

1)(2o)+1). (19c) 

Let us note carefully that we must avoid multiple counting of a diagram in Eq. 
(6) while using the modified contractions. Thus, single line insertions in the 
diagram of Fig. 4a generate a diagram (marked 2) which can be deformed in a 
way such that it appears as a modification of  three lines, as shown in Fig. 8. In 
that case, a simple strategy will be to drop all three-body E diagrams as insertions 
on internal lines connecting T~ T § of an energy diagram. Let us note that this 
procedure automatically excludes a double counting of the diagram (2) of  Fig. 
4b as well. Essentially with T = 7"2 approximation, basic skeletons are just one 
and two body self energy terms in the lowest order. Three body E's are redundant 
for one T + and one T vertex and four-body E's cannot be constructed unless 
one goes to a quartic term involving two T + and two T vertices. Thus, up to 
quartic terms in Egr, only E1 and E2 suffice. In our earlier communication [10] 
we considered a simple energy series up to cubic total power of  T+/T  amplitudes 
and the results were encouraging. We thus advocate in this paper use of the 
modified diagrams as shown in Fig. 9. The meaning of  the vertical line cutting 

Fig. 8. The second diagram in Fig. 4b can also be viewed as the 
insertion of  renormalized three body density matrix as shown here. 
Thus s imultaneously renormalizing one and three body density 
matrices can lead to overcounting in the energy 

a b c 

Fig. 9. The three lowest order terms in the renormalized energy series. Heavy lines indicate renormalized 
contraction. The vertical intersecting line indicates that the global propagator should be evaluated 
by Bethe-Salpeter  equation (13). The resultant series is exact through third order in T~ T + 



Coupled cluster theory for closed shells 135 

a b c 

Fig. 10. Diagrammatic representation of Bethe-Salpeter equation for a 2p -2h propagator. The heavy 
lines indicate the renormalized single particle contractions. Z 2 are the various types of two body 
irreducible vertex parts 

four thick lines of the diagrams is as follows. We have to evaluate the propagation 
of  the four thick lines as being calculated with the Bethe-Salpeter equation (13) 
using (14) with ~ and ~2 only. 

Diagrammatically this will correspond to Fig. 10. Fig. 10b is actually a symbolic 
representation of 4C2=6 diagrams obtained by joining two lines out of four 
having the topology shown there. Similarly Fig. 10c is a collection of six diagrams. 
It is clear from Fig. 10 that an iteration of v2~and ~.using Eqs. (12), (13) and 
(14) will generate all possible insertions with E~ and E2 as given in Figs. 2a and 
7a respectively. Insertion of ~3 and ~4 can be similarly accomplished. 

One wonders at this stage whether it will be possible to incorporate higher order 
skeletons of ~ and Z2 (and Ei, i > 2, in general) in a simpler and more compact 
manner instead of a brute force enumeration and inclusion of all the skeletons 
in El and Z2. This is indeed possible, as we shall show in Sect. 4, by invoking 
the concept of irreducible self energy in a way analogous to what is done in 
propagator renormalization in Green function theory [ 15, 18]. 

4. Propagator modification through irreducible self-energy insertion 

As before, we shall explain our approach by again taking concrete examples. Let 
us consider the one-body self-energy and try to analyze the topological structures 
of the few low-order components of Zj. The lowest order basic self-energy is, of  
course, that shown in Fig. 3a. The higher order ones are shown in Fig. 5. Let us 
note that all these higher order terms in ~1 have one feature in common: there 
is always a part (or parts) which could be looked upon as basic skeleton 
insertion(s) onto one or several internal lines of the ~t. Thus, the part inside the 
square of Fig. 5a is a proper one-body self energy insertion, and similarly the 
two parts inside the two squares of Fig. 5c are two one-body self energy insertions. 
The insertion in Fig. 5b is a two-body self energy insertion. Clearly, if we modify 
the propagators for the internal lines of the proper  self energy of Fig. 3a, then 
all these higher order proper self energies will be automatically accounted for. 
Thus, if we define a proper self-energy with modified propagators as in Fig. 1 la, 
with a modified three line propagator as defined in Fig. 1 lb, then all the higher 
order diagrams of ~1 of Fig. 5 and a host of other complicated diagrams will be 
exhausted. In order to avoid multiple counting, all the proper self-energy terms 
of Fig. 5 have, of course, to be excluded. Thus, once we decide which parts of 
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a b c 

Fig. 11. (a) An example of renormalized self energy term. The three internal lines of this term are 
renormalized contractions as indicated by the heavy lines. Additionally, the intersecting line on the 
three internal lines indicates the two body vertex part insertions. The resultant series for the internal 
propagator is shown in (b). (c) An example of renormalized two body vertex part 

the internal line propagators  in a term of Z are going to be modified by sets of  
selected insertions we must exclude those higher order skeletons of  E which have 
one or more of  these selected insertions f rom our consideration. There is a similar 
procedure for propagator  renormalization in Green function theory and, following 
this analogy, we call the modified proper  self energy skeletons "irreducible self 
energy". The higher order basic skeletons which have to be excluded shall be 
called "reducible self energy" [18]. The choice of  the insertions into the internal 
lines of  an irreducible self energy obviously dictates what will have to be con- 
sidered as reducible self energy at higher order. 

Similarly, if we want to modify the basic two-body term Fig. 7a of  E2, the simplest 
way will be to replace it by a diagram as shown in Fig. 1 lc. The modified two-line 
propagator  is defined as in Fig. 6a. This will automatically incorporate the higher 
two-body proper  self energy terms like Figs. 7b and 7c and also a host of  two-body 
insertions onto the diagram of Fig. 7a. Thus an optimal choice to include higher 
order Z~ and E2 insertions is to consider only the modified self energies of  Figs. 
1 la  and 1 lc, with insertions modifying the internal lines as defined in Figs. 3a 
and 7a. 

As an example of  working the expressions out for actual calculations, below we 
~ R N  give the expressions for the renormalised propagator  matrix-element Y l ~  and 

~ R N  EZ~b,r~ using the approximations discussed in the preceding paragraph. 

~ R N  t t p 
~'1o~,8 1 ~  ~,, 123pq,./ , q , y , {  p q It2l~y } ~ { p q [ t 2 l f l Y } r  1) (20a) 

o- pp, qq, 
3,,,/, 

~ R N  ~ _ l  t t ~,2a~,~/8o. ~ lJ2pq, rs{P q [t2lafl}r (20b) 
pp'  qq'  

with ~2 defined through Eqs. (17)-(19), and an analogous formula for u3 may 
be found out by writing the algebraic expression equivalent to Fig. 1 lb. 

For a practical calculation of ~ RN and ~RN an iterative self-consistent procedure 
has to be followed. One may start out with v ~ and v ~ as the starting v2 and v3 
matrices, get the T-amplitudes through solving the Euler variational equation of  
Eg,, and calculate ~o)  and Z(2 ~ matrices using Eq. (20). With these Z ' s  one goes 
back to Eq. (17) for v2 and the analogue of v3 and recalculates v~ and v3 ~. With 
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these new i terates ,  T -ampl i tudes  are eva lua ted  and  ~]~) and  ~(2 I) are re -ca lcula ted .  
The process  is con t inued  till  the input  and  the ou tpu t  ~'2 and  v3 matr ices  coincide .  

5. Concluding remarks 

In  this pape r ,  we have shown how to i nco rpo ra t e  the  con t r ibu t ion  o f  phys ica l ly  
impor t an t  terms with all  powers  o f  T§ ampl i t udes  a p p e a r i n g  in the  size- 
cons is ten t  infini te series o f  the g round  state energy funct ional .  The  m e t h o d  is 
concep tua l ly  ana logous  to the  p r o p a g a t o r  modi f i ca t ion  m e t h o d  o f  G r e e n  funct ion  
theory.  One  first selects a few low order  terms o f  the  cor re la t ion  con t r ibu t ion  of  
one-  and  two-e lec t ron  dens i ty  matr ices  pC and  p c ,  and  starts i nco rpo ra t i ng  h igher  
o rde r  con t r ibu t ions  to pC and  pC th rough  the use o f  modi f i ed  values  o f  the  
p ropaga to r s  o f  the in terna l  l ines appea r ing  in the se lec ted  low orde r  terms of  p c  
and  pC. This  au toma t i ca l ly  inc ludes  in pC and  pC the terms which  are genera ted  
by  inser t ing one  or  mul t ip le  compos i tes  involving T§ ampl i tudes .  The inser- 
t ions are leg i t imate ly  ca l led  p rope r  self  energy inser t ions  in a way  remin iscen t  
o f  the  p r o p e r  self  energy terms of  the G r e e n  funct ion  theory.  Reclass i fy ing the 
p r o p e r  se l f  energy inser t ions  into i r reduc ib le  self  energy and  reduc ib le  se l f  energy 
in a m a n n e r  s imi lar  to wha t  is used  in p r o p a g a t o r  r eno rma l i za t ion  in Green  
func t ion  theory  [18], one is also able  to inc lude ,  using only few low o rde r  n - b o d y  
self  energy inser t ions ,  many  o ther  h igher  o rde r  n - b o d y  self  energy cont r ibut ions .  
The a p p r o a c h  appea r s  comple t e ly  general ,  and ,  once cer ta in  T+/T d iag rams  are 
ident i f ied  as impor tan t ,  affords a rec ipe  o f  i nco rpo ra t ing  them to all orders  in 
the  s ize-consis tent  express ion  for  energy. The me thod  shou ld  thus prove  useful  
in removing  the loss o f  an u p p e r  b o u n d  p rope r ty  of  the  energy func t iona l  [14] 
as a resul t  o f  t runca t ion  o f  the func t iona l  by  sys temat ic  inc lus ion  o f  h igher  o rde r  
terms.  
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